## Homework 8

P7.2.15 The voltage waveform of Figure P7.2.15 is applied to an initiallyuncharged
$0.5 \mu \mathrm{H}$ inductor. (a)
Derive expressions for the inductor current
 during the time intervals: $0 \leq t \leq 10 \mu \mathrm{~s}, 10 \leq t \leq 40 \mu \mathrm{~s}, 40 \leq t \leq 60 \mu \mathrm{~s}, 60 \leq t \leq 80 \mu \mathrm{~s}$, and $t>80 \mu \mathrm{~s}$. (b) What is the flux linkage in the inductor at $t=10 \mu \mathrm{~s}$ and at $t=50 \mu \mathrm{~s}$ ? Check the final value of current against the final flux linkage. (c) What is the energy stored in the inductor at $t=80 \mu \mathrm{~s}$ ? (d) How do the expressions for the current through the inductor derived in (a) above change it the inductor current was initially 0.5 A ?

Solution: $i(t)=\frac{1}{L} \int_{t_{0}}^{t} v d t+I\left(t_{0}\right)$ (a) $0 \leq t \leq 10 \mu \mathrm{~s}: i(t)=\frac{1}{0.5} \int_{0}^{t} 1.5 t d t=1.5 t^{2} \mathrm{mV}$, where $t$ is in $\mu \mathrm{s}$. At $t=10 \mu \mathrm{~s}, i(t)=150 \mathrm{~mA}$.
$10 \leq t \leq 40 \mu \mathrm{~s}: i(t)=\frac{1}{0.5} \int_{10}^{t}(-t+25) d t+150=\left[-t^{2}+50 t\right]_{10}^{t}+150$ $=-t^{2}+50 t-250 \mathrm{~mA}$. At $t=40 \mu \mathrm{~s}, i(t)=150 \mathrm{~mA}$.
$40 \leq t \leq 60 \mu \mathrm{~s}: i(t)=\frac{1}{0.5} \int_{40}^{t}-15 d t+150=[-30 t]_{40}^{t}+150=-30 t+1350 \mathrm{~mA}$.
At $t=60 \mu \mathrm{~s}, i(t)=-450 \mathrm{~mA}$.
$60 \leq t \leq 80 \mu \mathrm{~s}: i(t)=\frac{1}{0.5} \int_{60}^{t}(0.75 t-60) d t-450=\left[0.75 t^{2}-120 t\right]_{60}^{t}-450=$
$0.75 t^{2}-120 t+4050 \mathrm{~mA}$. At $t=80 \mu \mathrm{~s}, i(t)=-750 \mathrm{~mA}$.
$t \geq 80 \mu \mathrm{~s}: i(t)=-750 \mathrm{~mA}$.
Check: Total area $=0.5 \times 15 \times 10+0.5 \times 15 \times 15-0.5 \times 15 \times 15-15 \times 20-$
$0.5 \times 15 \times 20=-375 \mathrm{nWb}-\mathrm{T}$. Hence $i(t)=\frac{-375}{0.5}=-750 \mathrm{~mA}$.
(b) At $t=10 \mu \mathrm{~s}, i(t)=150 \mathrm{~mA}$, so $\lambda=L i=75 \mathrm{nWb}-\mathrm{T}$.

At $t=50 \mu \mathrm{~s}, i(t)=-150 \mathrm{~mA}$, so $\lambda=L i=-75 \mathrm{nWb}-\mathrm{T}$.
(c) At $t=80 \mu \mathrm{~s}, i(t)=-750 \mathrm{~mA}$, so $w=\frac{1}{2} L i^{2}=0.14 \mu \mathrm{~J}$.
(d) All the expressions derived above for the current are increased by 0.5 A .

P7.2.21 Determine the energy stored in the inductor in Figure P7.2.21, assuming a dc steady state.
Solution: The current through the inductor is $5 / 5=1 \mathrm{~A}$. The energy stored in the inductor is $(1 / 2) \times 1 \times 1=0.5 \mathrm{~J}$.


Figure P7.2.21

P7.3.6 Determine the equivalent inductance between terminals 'ab' in Figure 7.3.6, assuming all inductances are 0.5 H .
Solution: 0.5 H in parallel with 0.5 H is 0.25 H ; in series with 0.5 H , this gives 0.75 H . In parallel with 0.5 H , this gives 0.3 H . It


Figure P7.3.6 follows that $L_{e q}=0.3+0.5=0.8 \mathrm{H}$.

P7.4.4 Given the circuit of Figure P7.4.4. (a) Derive the dual circuit; (b) compare the resistance or conductance seen by the independent source in each circuit; (c) compare the power delivered or absorbed by each circuit element in the two circuits.
Solution: (a) Bearing in mind that the dual of a series


Figure P7.4.4 connection is a parallel connection, the dual circuits are as shown, with each element in one circuit being the dual of the corresponding element in the other circuit. Note that in (a) the polarity of the CCVS is a voltage drop when the mesh is traversed CW. In (b) the current of the VCCS leaves the node that is the dual of the mesh in (a).
(b) It is seen from the currents and voltages that the CCVS in (a) is equivalent to a resistance of $7 / 2=3.5$ $\Omega$, so that the resistance seen by the source is $15|\mid 7.5=5 \Omega$. Similarly, the VCCS in (b) is equivalent to a conductance of


Figure P7.4.4-1 (b)
$7 / 2=3.5 \mathrm{~S}$, so that the conductance seen by the source is $15 \times 7.5 / 22.5=5 \mathrm{~S}$.
(c) It is seen that the voltages and currents are interchanged for dual elements, so that the powers are the same. These powers are: independent sources deliver $45 \mathrm{~W}, 5 \Omega / 5$ S resistors dissipate $5 \mathrm{~W}, 10 \Omega / 10 \mathrm{~S}$ resistors dissipate $10 \mathrm{~W}, 4 \Omega / 4 \mathrm{~S}$ resistors in parallel with dependent source dissipate 16 W , dependent sources absorb 14 W .

P7.4.6 (a) Derive the mesh-current equations using the mesh currents shown in Figure P7.46; (b) deduce the node-voltage equations of the dual circuit; (c) derive the circuit that will give these node-voltage equations with respect to a specified reference node.
Solution: (a) The mesh-current equations are:

$$
\begin{aligned}
& j \omega 2 \times 10^{-3} i_{1}=1 \mathrm{~V}-3 \mathrm{~V} \\
& j \omega 1 \times 10^{-3} i_{2}=3 \mathrm{~V}-2 \mathrm{~V} \\
& j \omega 3 \times 10^{-3} i_{3}=2 \mathrm{~V}-1 \mathrm{~V}
\end{aligned}
$$


(a)
(b) The node-voltage equations of the dual circuit are:

$$
\begin{aligned}
& j \omega 2 \times 10^{-3} v_{1}=1 \mathrm{~A}-3 \mathrm{~A} \\
& j \omega 1 \times 10^{-3} \mathrm{~V}_{2}=3 \mathrm{~A}-2 \mathrm{~A} \\
& j \omega 3 \times 10^{-3} \mathrm{~V}_{3}=2 \mathrm{~A}-1 \mathrm{~A}
\end{aligned}
$$

(c) The circuit that gives these node-voltage equations is as shown.


Figure P7.4.6-1 (b)

